KEYWORDS: Mobile Cloud Computing, Heterogeneity, Ubiquitous Computing, Context-Awareness, Trust, Energy Efficiency
ABSTRACT: Recent trend of mobile computing is emerging toward executing resource-intensive applications in mobile devices regardless of underlying resource restrictions (e.g. limited processor and energy) that necessitate imminent technologies. Prosperity of cloud computing in stationary computers breeds Mobile Cloud Computing (MCC) technology that aims to augment computing and storage capabilities of mobile devices besides conserving energy. However, MCC is more heterogeneous and unreliable (due to wireless connectivity) compare to cloud computing. Problems like variations in OS, data fragmentation, and security and privacy discourage and decelerate implementation and pervasiveness of MCC. In this paper, we describe MCC as a horizontal heterogeneous ecosystem and identify thirteen critical metrics and approaches that influence on mobile-cloud solutions and success of MCC. We divide them into three major classes, namely ubiquity, trust, and energy efficiency and devise a tripod of requirements in MCC. Our proposed tripod shows that success of MCC is achievable by reducing mobility challenges (e.g. seamless connectivity, fragmentation), increasing trust, and enhancing energy efficiency.